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Solutions using Abel’s method are developed for the irreversible Michaelis-Menten mechanism that governs
enzyme action. From these phase plane solutions, an approximate solution is derived that permits a study of
the time course of substrate and complex. Performance of the solutions in the phase plane and in temporal
evolution is assessed in comparison to numerical solutions, the quasi-equilibrium and pseudo-steady-state
approximations, and the iterative solution obtained by Fraser and co-workers. Both the complete and
approximate solutions perform well, especially in parameter regions of most practical interest.

1. Introduction

The description of the transients of enzyme-catalyzed reac-
tions has evolved since the first measurements by Chance1

quantified the intermediate complex. Using the difference in
light absorbance of enzyme, substrate, and complex in reactions
of horseradish peroxidase and catalase enzyme with rapid mixing
and flow techniques, the existence of the complex was
experimentally confirmed. Until then, the simplest two-step
mechanism of enzyme action, proposed by Henri2 and given in
eq 1, was treated using the approaches of Michaelis and Menten3

and Briggs and Haldane.4 While many systems do not follow
such a simple model, eq 1 is useful as a first step in describing
more complex reaction networks. Further, most networks are
usually governed by the steps in eq 1 as the subsequent steps
are much faster.
In eq 1, S represents substrate, E is enzyme, X is the

intermediate or complex, and thek’s denote rate constants. We
note that eq 1 is used under “closed” system conditions, where
steps connecting the reaction mechanism to the outside environ-
ment are not important. For open systems such steps, described
by input and output fluxes, are important. Michaelis and
Menten3 demonstrated that the kinetic description of eq 1 was
possible using only two parameters by assuming that the binding
step was at equilibrium, unperturbed by product formation. This
has become known as the quasi-equilibrium assumption (MM
in text). Briggs and Haldane4 removed this assumption of
equilibrium, but assumed that the rate of change of the complex
was negligible. This is known as the pseudo-steady-state
hypothesis (PSS in text). For several systems, especially in
vitro, the profiles were essentially in the decay regimes. This
is especially true when the value ofµ (defined as the ratio of
initial enzyme to initial substrate) was very small.µ was around
10-3-10-6 for the majority of reactions they considered;
therefore, the PSS worked very well. However the PSS fails
over significant regions of the time profile, wheneverµ is high.5

Such conditions are realistic in attempting to use enzymes as

industrial catalysts. Chance’s work motivated several analyses
aimed at improving the PSS.6-11 Heineken et al.12 and, more
recently, Li et al.13 and Fraser and co-workers14,15 are notable
attempts to achieve a complete solution.
In this work we will find solutions to describe the substrate

and complex concentrations both in the phase plane and with
time. To do this we first describe (section 2) a special type of
differential equation, the Abel16 form, which can be obtained
from the above mechanism. Solutions of these types of
differential equations are found as roots of nonlinear equations
in the phase plane. Section 3 presents comparisons of the exact,
numerical solution with the phase plane solutions for several
sets of enzyme reactions. These parameters include many of
those discussed in previous presentations of solutions to the
dynamics of eq 1 involving perturbation theory12,13or functional
equation14,15methods. The phase plane solution is not readily
decoupled to generate time profiles. An approximation is
proposed that permits the time variation of substrate and
complex to be calculated in the slow decay regime. The solution
is compared with the pseudo-steady-state approximation and
other solutions in the slow decay regime. Errors are tabulated
for a comparison of all solutions (both the complete phase plane
and in the slow decay regime) over a wide range of the key
parameters of the system.

2. Basic Equations

Following the law of mass action, we can write four
differential equations for eq 1

with the initial conditionsS(t)0) ) SO, E(t)0) ) Etot, and
X(t)0) ) P(t)0) ) 0. HereEtot is the total enzyme concen-
tration. The two mass conservation equations for a closed
system areEtot ) E + X and SO ) S + X + P with no
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E+ S y\z
k1

k-1
X 98

k2
E+ P (1)

dS/dt ) -k1SE+ k-1X (2)

dX/dt ) k1SE- k-1X- k2X (3)

dE/dt ) -k1SE+ k-1X- k2X (4)

dP/dt ) k2X (5)
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enzyme deactivation with the initial conditionsS(0) ) SO and
X(0) ) 0. Following ref 13,σ ) S/SO, κ ) X/Etot are defined
so thatσ and κ are the dimensionless substrate and complex
concentrations. The time variable is scaled according toτ )
k1Etott and dimensionless parameters are defined asµ ) Etot/
SO, ν ) Etot/KM, ω ) k2/(k-1 + k2), KM ) (k-1 + k2)/k1, ø )
KM/SO, andλ ) k2/k1SO. Hereµ ) νø andλ ) ωø. Equations
2-5 are rewritten as

Equations 6 and 7 may be combined in two ways

Equations 8 and 9 are in theσ, κ-plane or what will be referred
to henceforth as the phase plane. They are special types of the
Abel differential equation16 of the form

We can identify the functionsp0(x), p1(x), q0(x), andq1(x) for
either eq 8 or 9. According to Haentzschel16 the unconstrained
solution to eq 10 takes the form

where R1 and R2 are functions ofx and h1, h2, and C are
constants. The form of the functionsR1 and R2 has to be
determined. To do this the following recipe16 is used

where the primes denote derivatives (e.g. dR2/dx) and thep’s
andq’s are specified by the particular problem at hand. Given
the definitions in eqs 12-15 and taking the derivative of the
logarithm of eq 11, we can show that eq 11 is the form of
solution for eq 10. To make this solution practical, we must
find the unknownsR1, R2, h1, h2, andC using eqs 12-15.
EliminatingR1′ andR1 from eqs 13-15 we obtain

One could use the functional equation method14,15 to solve this
equation approximately, use eq 15 to findR1, and then find
solutions in the phase plane as roots of eq 11. This did not

give meaningful roots for eq 11 so we use another, simplified
approach that leads to tractable expressions, which are signifi-
cant improvements on the PSS and MM expressions. Equation
16 is in the same form as eq 10, with a change in the sign of
the off-diagonal terms. To simplify the problem we write the
differential of eq 15 as

Using eqs 13, 15, and 17 to eliminateR1′ andR1

Now, equating eqs 16 and 18 the expression forR2 is

SubstitutingR2 into eq 14

Alternately, substituting eq 19 into eq 15 we obtain the same
form as in eq 19, but with the termsh1 andh2 interchanged.
The form ofR1 in eq 20 will be used in the rest of the analysis.
The three constantsh2, C1, andCmust be evaluated.h1 is then
found from eq 12. For thep’s andq’s of eq 9,R1 andR2 can
be determined as

In eqs 21 and 22,P ) h2/h1 and the solution to eq 9 takes the
form

The constantC is found using the initial point [σ ) 1, κ ) 0],
giving

The final point [σ ) 0, κ ) 0] can be used to determineC1.
SinceR2 andκ are both zero this creates a singularity in eq 23.
This singularity can be avoided if we prescribe thath2 < 0, so
thatR1 ) 0 and thereforeC1 is found from eq 22 withσ ) 0
as

The constanth2 remains to be found and can be evaluated from
the initial slope which is found from eq 9 to be-1/µ. The
derivative of eq 23 at the initial point results in a quartic equation
in P, with two real roots, one of which ish2 ) -1, which is
inapplicable, and two complex roots. The desired real root for
h2 can be calculated using a conventional nonlinear equation

q0′ ) h1R2′ + h2R1′ (17)

R2′ )
h1q0′ + h2p1
h1 - h2

(18)

R2 ) q0(1+
(p0/q0) - p1
q0′ + p1

(h1 - h2)

h1 ) (19)

R1 )
-∫p1 dx+ C1

h1
-
h2R2

h1
(20)

R2 ) -σ
σ + ø - λ[1-

λ
µ
(1-P)

ø - λ
σ + ø - λ

+ σ + ø
µ

] (21)

R1 ) σ
µh1

+ λ
µ h1

ln[σ + ø - λ] + C1 - PR2 (22)

(κ + R1)
h1(κ + R2)

h2 ) C (23)

(Rli)
h1(R2i)

h2 ) C (24)

C1 ) -λ
µ h1

ln(ø - λ) (25)

dσ/dτ ) -σ + (σ+ø-λ)κ (6)

µ(dκ/dτ) ) σ - (σ+ø)κ (7)

dσ
dκ

)

µ(ø - λ)
1-κ

κ - µσ

-øκ
1-κ

+ σ
(8)

dκ
dσ

)

σ
µ(σ + ø - λ)

-
(σ + ø)

µ(σ + ø - λ)
κ

-σ
σ + ø - λ

+ κ

(9)

dy
dx

)
p0 + p1y

q0 + q1y
(10)

(y+ R1)
h1(y+ R2)

h2 ) C (11)

q1 ) 1) h1 + h2 (12)

p0 ) -h1R1′R2 - h2R2′R1 (13)

p1 ) -h1R1′ - h2R2′ (14)

q0 ) h1R2 + h2R1 (15)

R2′ )
p0 - p1R2

-q0 + R2
(16)
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solver such as those available in the International Mathematical
Software Library (IMSL). The package DNEQNF was used
here.

3. Enzyme Reaction Examples and Comparisons in
Phase Plane

We considered several different enzyme reactions: (Figure
1a) the system of Lim5 for chymotrypsin and acetyl-L-phenyl
alanine ester, (Figure 1b) the values used by Heineken et al.12

for the system trypsin and benzoyl-L-arginine ester, and (Figure
1c) a set with very highω ) 0.889. The last set may not be
realistic, yet it explores the limitations of eq 23.ω expresses
the degree of reversibility of the complex formation step. It is
defined solely by the reaction rate constants and, when large,
suggests that the Michaelis-Menten quasi-equilibrium assump-
tion is not reliable. In Figure 1, the parameter sets and the
calculated value ofh2 are given in the captions. The Abel
solution eq 23, with the constants defined in eqs 24 and 25 and
the value ofh2 calculated from the initial slope, was used to
study the parameter combinations. These solutions are com-
pared to simultaneous solutions of eqs 6 and 7 from an ordinary
differential equation solver, LSODE. Since eq 23 is a nonlinear
equation in one variableκ, it was solved using DNEQNF with
fixed values ofσ. The initial guess forκ was chosen as an

arbitrary, small number, which may sometimes produce poor
solutions in a narrow range. This is an artifact of the
convergence of the nonlinear root finder. The solution is
improved on using a better initial guess for the root finder, such
as the value ofκ from the simultaneous, numerical solution
itself.
Since our aim here is to show that solutions in the phase

plane possess the form of eq 23, we do not use any other choice
of initial guesses. Figure 1 shows that the solution of the Abel
type equation maps the initial and decay regimes of the
mechanism in eq 1. For several combinations the solution
(dashed lines) is indistinguishable from the numerical solution,
even though the initial guess to the root finder is considerably
distant from the numerical solution. Curve 3 of Figure 1b and
curve 2 of Figure 1c, however, indicate that the root of eq 23
differs from the numerically calculated solution in the phase
plane whenµ or ν are close to 1. Whenω is large this
discrepancy exists even whenµ or ν are not close to 1.
On the basis of Table 1 and figures such as Figure 1, an error

less than 1.0× 10-7 is deemed acceptable for the complete
solution. Then the poorest match of eq 23 and the numerical
solution is obtained whenω is large andµ ) ν > 1. There is
only small numerical error in finding the roots of eq 23 for the
particular value ofh2 being used. Since the numerical solution
is accepted as accurate, it is possible that the use of eq 17,
introduced to generate a solution forR2, places constraints on
the solution space. Whenh2 is very small, the complete solution
matches the numerical solution very well. Curve 3 of Figure
1b shows that the error is comparable to solutions from singular
perturbation12 for the same data. The situation with smallµ or
ν {<0.1} can be created by manipulating the initial levels of
substrate and enzyme. These levels are, however, still large
enough so that the PSS will still be in error17 whereas the fast
asymptote is described well by the roots of eq 23 for anyω.
When ν > 1 errors from eq 23 show a maximum asµ
approaches 1 at fixedω. Since the value ofh2 is generally not
integral, eq 23, which relatesκ andσ, is not decoupled easily.
To investigate the possibility of a simpler, useful solution,h2
was set at zero. Withh2 ) 0 only the individual factors on the
left-hand side of eq 23 can be used. These solutions cannot
pass through the initial point. Recognizing this,σ ) R2(κ) or
κ ) R2(σ) were used as approximate solutions. Equation 19
with h2 ) 0 gives the solutions for eqs 8 and 9 as

Terms outside the brackets in eqs 26 and 27 are the PSS and
MM kinetic limits. Reference 10 arrived at expansions with
similar forms as eqs 26 and 27. The performance of eqs 26
and 27 was compared with the iterated solutions of Fraser and
co-workers for the same mechanism.14,15 This solution relies
on writing the phase plane equation as a functional equation,
then performing iteration to refine the solution. Figure 2a,b
shows that the iterative solution, even with only the third iterate,
is quite powerful. Table 1 confirms this over the slow manifold
portion for a range of parameters. We note here that over the
slow asymptote there are rigorously only two independent
parameters, sinceSO is essentially eliminated.14,15 Since Table
1 shows errors for the complete solution as well, all three
parameters are shown; however, calculated error magnitudes

Figure 1. Solutions in phase plane for systems of (a) ref 5, (b) ref 12,
and (c) largeω (0.889). Lines are numerical solutions and dashed lines
are solutions from eq 23. Parameters for part a, curve 1:µ ) 0.1, ν
) 0.1,ω ) 0.1,h2 ) -0.00229. Curve 2:µ ) 0.5,ν ) 0.5,ω ) 0.1,
h2 ) -0.00895. Curve 3:µ ) 1.0,ν ) 1.0,ω ) 0.1,h2 ) -0.0136.
Parameters for part b, curve 1:µ ) 0.01,ν ) 0.01,ω ) 0.375,h2 )
-0.000845. Curve 2:µ ) 0.1,ν ) 1.0,ω ) 0.375,h2 ) -0.0080795.
Curve 3: µ ) 1.0,ν ) 1.0,ω ) 0.375,h2 ) -0.05426. Curve 4:µ
) 10.0,ν ) 1.0,ω ) 0.375,h2 ) -0.1235. Parameters for part c,
curve 1: µ ) 0.1, ν ) 1.0,ω ) 0.889,h2 ) -0.00533. Curve 2:µ
) 1.0, ν ) 1.0,ω ) 0.889,h2 ) -0.098. Curve 3:µ ) 10.0,ν )
1.0,ω ) 0.889,h2 ) -0.839.

σ ) øκ
1-κ{1- ων

ν + 1

(κ-1)2} (26)

κ ) σ
σ + ø - λ{1-

λ(σ + ø - λ)
(σ + ø - λ)(σ + ø) + µ(ø - λ)} (27)
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are unaffected. To calculate errors we used a large number of
points for the complete solution and reduced the number for
the slow asymptote since these solutions do not approach the
initial point. The match with the numerical solution of the third
iterate over the slow asymptote is extremely good even where
substrate and enzyme initial concentrations are equal. The
iterative solution can also be refined to any degree desired. A
similar functional equation can be written for velocity. Other,

complicated mechanisms have been treated by the same
method14,15as well. For two-dimensional problems this method
is equivalent to ordinary perturbation expansion. However for
three or more concentrations this equivalence breaks down.18

This simple yet powerful solution is the proper standard against
which to compare eqs 26 and 27, which can be shown to be
superior to the PSS or MM approximations using the error
measure of Crooke et al.11 Figure 2a shows the case for
parameters from ref 14 which translate toµ ) 1, ν ) 0.5, and
ω ) 0.5. Figure 2b applies to longer times. The solution on
the scale of the figures is quite good for the approximations. In
the slow asymptote, errors less than 1.0× 10-4 - 1.0× 10-5

are acceptable although neither eq 26 nor 27 are as accurate as
the third iterate solution. All the solutions are superior to the
PSS or MM approximations. The quantitative measures given
in Table 1 show that eqs 26 and 27 are greatly improved ifµ
) 0.1 or 10 for larger values ofν (>0.5). In extracting rate
constants velocity profiles are needed. The simplified form of
eqs 26 and 27 are useful, provided suitable values ofµ or ν far
from unity are chosen. Time profiles require the calculation
of a positioning constant since the solutions in eqs 26 and 27
do not start att ) 0. The point of intersection of the initial
slope line with the solutions from eqs 26 and 27 in the phase
plane was used to assign the zero-time position. DIR refers to
eq 26 and INV to eq 27. Substitute eq 26 in eq 7 and integrate
to obtain

Equation 27 in eq 6 gives

MM and PSS solutions are

TABLE 1: Errors from Complete Solution and Solutions in Slow Asymptote

parameters complete solution slow asymptote solutions

µ ν ω h2 eq 23 no. of pts ref 14 errorb eq 26 eq 27 no. of pts

0.1 0.1 0.1 -0.0023 6.95e-7a 400 9.4e-16 9.37e-4 1.08e-4 350
1 0.1 0.1 -0.0071 9.95e-9 400 1.1e-15 1.37e-3 1.06e-5 350
10 0.1 0.1 -0.0083 4.2e-12 400 2.5e-16 1.4e-3 1.43e-7 350

0.1 1 0.1 -7.4e-3 4.86e-8 250 8.9e-16 1.53e-3 6.12e-5 200
1 1 0.1 -0.0136 2.04e-6 250 2.2e-12 4.0e-3 8.1e-4 200
10 1 0.1 -0.0255 6.5e-10 250 1.9e-13 4.2e-3 3.8e-5 200

0.1 10 0.1 -8.8e-5 8.3e-11 300 0.0 2.58e-7 3.8e-11 250
1 10 0.1 -0.004 1.6e-5 300 1.1e-14 1e-3 6.9e-4 250
10 10 0.1 -0.0128 4.9e-8 300 3.0e-14 5.4e-4 2.91e-4 250

0.1 0.1 0.5 -0.0103 1.57e-6 400 1.4e-11 9.27e-3 1.4e-3 350
1 0.1 0.5 -0.0372 1.84e-8 400 1.79e-9 0.0117 1.08e-4 350c

1 0.1 0.5 -0.0372 1.84e-8 400 1.7e-12 0.0137 1.2e-4 300c

10 0.1 0.5 -0.0461 1.3e-10 400 9.5e-14 0.014 1.77e-6 300

0.1 1 0.5 -0.0035 1.75e-6 200 1.98e-9 6.9e-4 7.3e-4 150
1 1 0.5 -0.0729 2.18e-5 200 2.73e-8 1.47e-2 3.3e-2 150
10 1 0.5 -0.1918 2.85e-8 200 2.3e-9 1.5e-2 2.67e-4 150

0.1 10 0.5 -4.3e-4 5.35e-8 200 0.0 7.9e-2 1.45e-4 150
1 10 0.5 -0.0198 2.6e-4 200 3.4e-6 1.78e-2 1.28e-2 150
10 10 0.5 -0.1029 3.08e-5 200 2.75e-9 1.3e-2 9.16e-3 150

aRead as 6.95× 10-7. b Third iterate of Fraser and co-workers.14,15 cUses fewer points along slow asymptote for error computation; error)
average of the square of the deviations from the numerical solution.

Figure 2. Solutions in phase plane forµ ) 1, ν ) 0.5,ω ) 0.5: a,
shorter time; b, longer times. Crosses refer to third iterate of Fraser14

solution. (c) Time evolution ofσ for µ ) 0.5,ν ) 0.125,ω ) 0.375.
τDIR )

ln(1- κ) - (ν + 1) ln(κ) - 1
1-κ

ω
+
k2ν
ω
CDIR (28)

τINV )
µ ln(σ + ø - λ) - (ø + µ) ln(σ) - σ

ωø
+
k2µ
ωø

CINV

(29)

720 J. Phys. Chem. A, Vol. 102, No. 4, 1998 Sundaram and Wankat



These integrations are a direct result of being able to decouple
eqs 6 and 7 so that they are written only in terms of a single
variable for the two-dimensional system of eq 1. Figure 2c
shows the extracted profiles for a region where PSS and MM
solutions fail, yet where eqs 28 and 29 perform well. Exact
solution of eqs 6 and 7 was found numerically using LSODE.

4. Summary

The governing kinetic equations for the irreversible, Michae-
lis-Menten enzyme-catalyzed reaction, which is also significant
in other chemical processes, are shown to be special types of
the Abel differential equation. Several works9,11,19have pointed
out the intractability of formulating the problem in this manner.
However, on the basis of Haentzschel’s16 suggestions, a solution
was derived and uses the Abel differential equation written in
the form of eq 10. This particular form is commonly observed
in the course of kinetic analysis of general plane autonomous
systems. The solution accurately describes initial transients and
the decay regime for a large range of parameters, providedµ
and ν are small. These values, however, are such that the
conventional steady-state approximations are still invalid. Initial
transients were maintained in the analysis through the initial
substrate concentration which appears in the balances.12,13 If
only a description of the invariant manifold14,15,20is sought, such
initial information is eliminated since the system is assumed to
be in the slow decay phase.
The parameterh2 was calculated from the initial slope and is

a negative number. Whenh2 is very small (yet negative and
non-zero) this solution in the phase plane is indistinguishable
from the exact solution, even during the initial transients.
However, the complete phase plane solution for the two-
dimensional mechanism of eq 1 is not easily reduced to a time
profile. For this purpose an approximation (h2 ) 0) was made
that leads to two forms of asymptotic solutions, eqs 26 and 27.
These bracket the exact solution in the slow asymptote yet with

far lower error than the PSS and MM expressions. These
approximations and the resulting time profiles compare favor-
ably with the rigorous iterative solution for the slow decay
regime based on a functional equation approach. The position-
ing technique developed is applicable even when the quasi-
equilibrium assumption is invalid.
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