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Dynamics of the Irreversible Michaelis—Menten Kinetic Mechanism
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Solutions using Abel’s method are developed for the irreversible Michaklenten mechanism that governs
enzyme action. From these phase plane solutions, an approximate solution is derived that permits a study of
the time course of substrate and complex. Performance of the solutions in the phase plane and in temporal
evolution is assessed in comparison to numerical solutions, the quasi-equilibrium and pseudo-steady-state
approximations, and the iterative solution obtained by Fraser and co-workers. Both the complete and
approximate solutions perform well, especially in parameter regions of most practical interest.

1. Introduction industrial catalysts. Chance’s work motivated several analyses
aimed at improving the PSS! Heineken et al? and, more

Th ription of the transients of enzyme- lyzed reac- .
e description of the transients of enzyme-catalyzed reac recently, Li et al® and Fraser and co-workéfd®are notable

tions has evolved since the first measurements by CRance attempts 1o achieve a comolete solution
qguantified the intermediate complex. Using the difference in n tEi work we will find pl Hons t d. ribe th bstrat
light absorbance of enzyme, substrate, and complex in reactions S WO € solutions to describe the substrate

of horseradish peroxidase and catalase enzyme with rapid mixingf.‘rr;]de qun;p(;ixtﬁgnCzr}F::ngzc?%t: Igetcht%r?gaS:splgg'ZﬁndeV\gﬁ‘h
and flow technigues, the existence of the complex was IMe. Is we i ibe ( ' ) a special typ

experimentally confirmed. Until then, the simplest two-step differential equation, the AbE form, which can be obtained

mechanism of enzyme action, proposed by Heamid given in frpm th? above' mechanism. - Solutions of these type; of
differential equations are found as roots of nonlinear equations

eq 1, was treated using the approaches of Michaelis and Menten in the phase plane. Section 3 presents comparisons of the exact,
K K, numerical solution with the phase plane solutions for several

E+ Sf X—E+P (1) sets of enzyme reactions. These parameters include many of
those discussed in previous presentations of solutions to the

and Briggs and Haldarfe.While many systems do not follow dynamics of eq 1 involving perturbation the&j2or functional

such a simple model, eq 1 is useful as a first step in describing equatior®**methods. Th? phase plane solution is not rgadi!y
more complex reaction networks. Further, most networks are decoupled to generate time profiles. An approximation is

usually governed by the steps in eq 1 as the subsequent stepBroPosed that permits the time variation of substrate and
are much faster. complex to be calculated in the slow decay regime. The solution

In eq 1, S represents substrate, E is enzyme, X is the is compare;d Wi.th the pseudo-steady-state approximation and
intermediate or complex, and ths denote rate constants, We ~Other solutions in the slow decay regime. Errors are tabulated
note that eq 1 is used under “closed” system conditions, wherefor a comparison of all solut_|ons (both the (_:omplete phase plane
steps connecting the reaction mechanism to the outside environ@nd in the slow decay regime) over a wide range of the key
ment are not important. For open systems such steps, describe@@rameters of the system.
by input and output fluxes, are important. Michaelis and
Menter? demonstrated that the kinetic description of eq 1 was
possible using only two parameters by assuming that the binding Following the law of mass action, we can write four
step was at equilibrium, unperturbed by product formation. This differential equations for eq 1
has become known as the quasi-equilibrium assumption (MM

2. Basic Equations

in text). Briggs and Haldareremoved this assumption of ds/dt = —k,SE+ k_;X (2)
equilibrium, but assumed that the rate of change of the complex
was negligible. This is known as the pseudo-steady-state dX/dt = k,SE— k_,X — kX )

hypothesis (PSS in text). For several systems, especially in
vitro, the profiles were essentially in the decay regimes. This

is especially true when the value pf(defined as the ratio of dE/dt = —k,;SE+ k_;X — kX 4)
initial enzyme to initial substrate) was very small.was around

A S . ) .
103-10"° for the majority of reactions they considered; dP/dt = k,X (5)

therefore, the PSS worked very well. However the PSS fails
over significant regions of the time profile, whenewsis high®

Such conditions are realistic in attempting to use enzymes asith the initial conditionsS(t=0) = S, E(t=0) = Ei, and

X(t=0) = P(t=0) = 0. HereEy is the total enzyme concen-
* Mail all correspondence to N. Sundaram at Information Systems, 1777 tration. The two mass conservation equations fo_r a closed
W. Michigan Ave., Suite 2, Ypsilanti, Ml 48197. system areEi,t = E + X and S = S + X + P with no
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enzyme deactivation with the initial conditio®0) = S and

X(0) = 0. Following ref 13,0 = 9, k = X/Eio; are defined

Sundaram and Wankat

give meaningful roots for eq 11 so we use another, simplified
approach that leads to tractable expressions, which are signifi-

so thato and « are the dimensionless substrate and complex cant improvements on the PSS and MM expressions. Equation

concentrations. The time variable is scaled according o
kiEwtt and dimensionless parameters are defined as Eiof
So, v = EolKm, @ = kol (k-1 + ko), Km = (k-1 + ka)/ky, x =

Ku/So, andA = ki/kiSo. Hereu = vy andl = wy. Equations

2—5 are rewritten as
do/dt = —0 + (o+y—A)k (6)
u(de/dr) = o — (ot+y)k @)

Equations 6 and 7 may be combined in two ways

wo=n _ _
do_ 1=« = = ! (8)
e e
1—«
o (ot n
de _uloty—4) wulot+y—4)
p 5 9)
—7 &
oty—271

Equations 8 and 9 are in tlwe «-plane or what will be referred

16 is in the same form as eq 10, with a change in the sign of
the off-diagonal terms. To simplify the problem we write the
differential of eq 15 as

do = hioy + hay (17)

Using egs 13, 15, and 17 to eliminaig’ and oy

. gy +hypy
o = hl _ h2 (18)
Now, equating egs 16 and 18 the expressiondfpis
(P/do) — Py (N — hy)
a,=0qyl+ - 19
2= % Qo TP hy (19)
Substitutinga,; into eq 14
—[Pidx+C;  hya,
o= - (20)

hy hy

Alternately, substituting eq 19 into eq 15 we obtain the same

to henceforth as the phase plane. They are special types of thdorm as in eq 19, but with the terntg and h, interchanged.

Abel differential equatiot of the form

dy _ Po t Py

10
dx gyt gy (10)

We can identify the functionpo(X), p(X), do(X), andda(x) for

either eq 8 or 9. According to Haentzsc¥é¢he unconstrained

solution to eq 10 takes the form
+ o)™y +a)=C (11)

where a; and a, are functions ofx and hy, hy, and C are

constants. The form of the functions, and o, has to be

determined. To do this the following reci{fds used

g,=1=h,+h, (12)

Po = —hy04'0, — hyo,'oy (23)
p, = —hoy' — hyo) (14)
0o = hyo, + hyoy (15)

where the primes denote derivatives (e.gp/dy) and thep’'s

The form ofay in eq 20 will be used in the rest of the analysis.
The three constants, C;, andC must be evaluatedh; is then
found from eq 12. For the's andq's of eq 9,a; anda, can
be determined as

By 4P
a2=0+x—/11_ ¥ — A Loty (1)
oty—A u
=L+ Info+y—a]+C—Pa, (22)
Youhy by ! 2

In egs 21 and 22 = hy/h; and the solution to eq 9 takes the
form

(k + o)™k + a)2=C (23)

The constanC is found using the initial pointd = 1, « = 0],
giving

(o) (o) = C (24)

The final point p = 0, ¥ = 0] can be used to determir&.
Sincea; and«k are both zero this creates a singularity in eq 23.

andg's are specified by the particular problem at hand. Given ;g singularity can be avoided if we prescribe that< 0, so

the definitions in egs 1215 and taking the derivative of the
logarithm of eq 11, we can show that eq 11 is the form of ;¢
solution for eq 10. To make this solution practical, we must

find the unknownsoy, op, hi, hy, and C using eqs 1215.
Eliminating o' anda; from egs 13-15 we obtain

, _ Po~ P,

%2 = )

(16)

One could use the functional equation metHdéito solve this
equation approximately, use eq 15 to fingd, and then find

thatoy = 0 and thereforeC; is found from eq 22 witho = 0

C,= ﬂ_—ﬁl In(; — ) (25)

The constanh, remains to be found and can be evaluated from
the initial slope which is found from eq 9 to belju. The
derivative of eq 23 at the initial point results in a quartic equation
in P, with two real roots, one of which iB; = —1, which is
inapplicable, and two complex roots. The desired real root for

solutions in the phase plane as roots of eq 11. This did not h, can be calculated using a conventional nonlinear equation
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1 arbitrary, small number, which may sometimes produce poor
’ 1 solutions in a narrow range. This is an artifact of the
convergence of the nonlinear root finder. The solution is
: 3 ; improved on using a better initial guess for the root finder, such
0.5 4 o as the value ok from the simultaneous, numerical solution
; : itself.
: (a) Since our aim here is to show that solutions in the phase
0 : ' plane possess the form of eq 23, we do not use any other choice
0 0.2 0.4 of initial guesses. Figure 1 shows that the solution of the Abel
X/Etot type equation maps the initial and decay regimes of the
: ; mechanism in eq 1. For several combinations the solution
3 : (dashed lines) is indistinguishable from the numerical solution,
4 X even though the initial guess to the root finder is considerably
05ty RN AN ERERE distant from the numerical solution. Curve 3 of Figure 1b and
: curve 2 of Figure 1c, however, indicate that the root of eq 23
(b) differs from the numerically calculated solution in the phase
: : plane whenu or v are close to 1. Whem is large this
0 0.2 0.4 discrepancy exists even whanor v are not close to 1.
X/Etot On the basis of Table 1 and figures such as Figure 1, an error
; less than 1.0x 1077 is deemed acceptable for the complete
solution. Then the poorest match of eq 23 and the numerical
: solution is obtained whew is large andt = v > 1. Thereis
(e : . s e s
Dost= Y e only small numerical error in finding the roots of eq 23 for the
: particular value oh;, being used. Since the numerical solution
is accepted as accurate, it is possible that the use of eq 17,
. introduced to generate a solution fag, places constraints on
0 05 1 the solution space. \_Nheha is very small, the complete solut_ion
X/Etot matches the numerlcal_solut|on very well. C_urve 3 of Elgure
] o 1b shows that the error is comparable to solutions from singular
Figure 1. Solutions in phase plane for systems of (a) ref 5, (b) ref 12, perturbatiod? for the same data. The situation with smatbr

and (c) largev (0.889). Lines are numerical solutions and dashed lines . . A,
are éo)lutiogns f(rom e()] 23. Parameters for part a, curve & 0.1, v {<0.1} can be created by manipulating the initial levels of

S/So

S/So

=0.1,0 = 0.1,h, = —0.00229. Curve 2u = 0.5,y = 0.5,0 = 0.1, substrate and enzyme. These levels are, however, still large
h, = —0.00895. Curve 3 = 1.0,» = 1.0,w = 0.1,h, = —0.0136. enough so that the PSS will still be in effowhereas the fast
Parameters for part b, curve 1z = 0.01,» = 0.01,w = 0.375,h, = asymptote is described well by the roots of eq 23 for any
—0.000845. Curve 2u =0.1,» =1.0,w = 0.375,h, = —0.0080795. When v > 1 errors from eq 23 show a maximum as
Eurve 3: u= 1.0, v= 1.0,w = g375,hz = —0.05426. Curve 4u approaches 1 at fixed. Since the value dfi; is generally not
Gy e 2 03T 01235, Paremetes o e, integra, eq 23, which reltasando, is not decoupled casily
=1.0,» = 1.0,w = 0.889,h, = —0.098. Curve 3:u = 10.0,» = To investigate the possibility of a simpler, useful solutibp,
1.0,w = 0.889,h, = —0.839. was set at zero. With, = 0 only the individual factors on the

left-hand side of eq 23 can be used. These solutions cannot

solver such as those available in the International MathematicalPass through the initial point. Recognizing this= a,(«) or
Software Library (IMSL). The package DNEQNF was used K = 02(0) were used as approximate solutions. Equation 19

here. with h, = O gives the solutions for egs 8 and 9 as
3. Enzyme Reaction Examples and Comparisons in o= IX_K— 1- w—vl (26)
Phase Plane . v+ -

(k—1)

We considered several different enzyme reactions: (Figure

1a) the system of Limfor chymotrypsin and acetyl-phenyl o j' Mo+y—4) } 27)
) . ' k= —

?Ianlne ester, (Flgu_re 1b) the values_u_sed by Helneker_ﬂét al. o+ — M‘ (04 7=+ x) +uly— 1)
or the system trypsin and benzaylarginine ester, and (Figure
1c) a set with very higlw = 0.889. The last set may not be Terms outside the brackets in eqs 26 and 27 are the PSS and
realistic, yet it explores the limitations of eq 2% expresses MM kinetic limits. Reference 10 arrived at expansions with
the degree of reversibility of the complex formation step. Itis similar forms as eqs 26 and 27. The performance of eqs 26
defined solely by the reaction rate constants and, when large,and 27 was compared with the iterated solutions of Fraser and
suggests that the Michaeli#lenten quasi-equilibrium assump-  co-workers for the same mechanidfi® This solution relies
tion is not reliable. In Figure 1, the parameter sets and the on writing the phase plane equation as a functional equation,
calculated value oh, are given in the captions. The Abel then performing iteration to refine the solution. Figure 2a,b
solution eq 23, with the constants defined in eqs 24 and 25 andshows that the iterative solution, even with only the third iterate,
the value ofh, calculated from the initial slope, was used to is quite powerful. Table 1 confirms this over the slow manifold
study the parameter combinations. These solutions are com-portion for a range of parameters. We note here that over the
pared to simultaneous solutions of eqs 6 and 7 from an ordinaryslow asymptote there are rigorously only two independent
differential equation solver, LSODE. Since eq 23 is a nonlinear parameters, sincg is essentially eliminate#:15> Since Table
equation in one variable, it was solved using DNEQNF with 1 shows errors for the complete solution as well, all three
fixed values ofg. The initial guess foi was chosen as an  parameters are shown; however, calculated error magnitudes
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TABLE 1: Errors from Complete Solution and Solutions in Slow Asymptote

parameters complete solution slow asymptote solutions
u v 1) h, eq 23 no. of pts ref 14 error eq 26 eq 27 no. of pts
0.1 0.1 0.1 —0.0023 6.95e 72 400 9.4e-16 9.37e-4 1.08e-4 350
1 0.1 0.1 —0.0071 9.95e9 400 1.1e-15 1.37e-3 1.06e-5 350
10 0.1 0.1 —0.0083 4.2e12 400 2.5e-16 1.4e-3 1.43e-7 350
0.1 1 0.1 —7.4e-3 4.86e-8 250 8.9e-16 1.53e-3 6.12e-5 200
1 1 0.1 —0.0136 2.04e6 250 2.2e12 4.0e-3 8.le-4 200
10 1 0.1 —0.0255 6.5e-10 250 1.9e-13 4.2e-3 3.8e-5 200
0.1 10 0.1 —8.8e-5 8.3e-11 300 0.0 2.58e7 3.8e-11 250
1 10 0.1 —0.004 1.6e5 300 l.le-14 le-3 6.9e-4 250
10 10 0.1 —0.0128 4.9e8 300 3.0e-14 5.4e-4 29le-4 250
0.1 0.1 0.5 —0.0103 1.57e6 400 l4e11 9.27e-3 1.4e-3 350
1 0.1 0.5 —0.0372 1.84e8 400 1.79e-9 0.0117 1.08e4 350
1 0.1 0.5 —0.0372 1.84e8 400 1.7e-12 0.0137 1.2e4 300
10 0.1 0.5 —0.0461 1.3e-10 400 9.5e-14 0.014 1.77e6 300
0.1 1 0.5 —0.0035 1.75e6 200 1.98e9 6.9e-4 7.3e-4 150
1 1 0.5 —0.0729 2.18e5 200 2.73e8 1.47e-2 3.3e-2 150
10 1 0.5 —0.1918 2.85e8 200 2.3e9 1.5e-2 2.67e-4 150
0.1 10 0.5 —4.3e-4 5.35e-8 200 0.0 7.9e2 1.45e-4 150
1 10 0.5 —0.0198 2.6e4 200 3.4e6 1.78e-2 1.28e-2 150
10 10 0.5 —0.1029 3.08e5 200 2.75e9 1.3e-2 9.16e-3 150

aRead as 6.95 1077. b Third iterate of Fraser and co-workérs'>¢ Uses fewer points along slow asymptote for error computation; efror
average of the square of the deviations from the numerical solution.

complicated mechanisms have been treated by the same
method41%as well. For two-dimensional problems this method
is equivalent to ordinary perturbation expansion. However for
three or more concentrations this equivalence breaks déwn.
This simple yet powerful solution is the proper standard against
which to compare eqs 26 and 27, which can be shown to be
superior to the PSS or MM approximations using the error
measure of Crooke et &l. Figure 2a shows the case for
S/So parameters from ref 14 which translateite= 1, v = 0.5, and
0.04 ; o = 0.5. Figure 2b applies to longer times. The solution on

5 the scale of the figures is quite good for the approximations. In
: the slow asymptote, errors less than ¥.A04 — 1.0 x 1075
IO are acceptable although neither eq 26 nor 27 are as accurate as
: the third iterate solution. All the solutions are superior to the
PSS or MM approximations. The quantitative measures given

Etot/So = 1

in Table 1 show that eqs 26 and 27 are greatly improved if
00 0.02 0.04 = 0.1 or 10 for larger values af (>0.5). In extracting rate

S/So constants velocity profiles are needed. The simplified form of
i N egs 26 and 27 are useful, provided suitable valugsafv far
from unity are chosen. Time profiles require the calculation
° : of a positioning constant since the solutions in eqgs 26 and 27
Nos = ‘S L do not start at = 0. The point of intersection of the initial
0 : : slope line with the solutions from eqs 26 and 27 in the phase
plane was used to assign the zero-time position. DIR refers to
: eq 26 and INV to eq 27. Substitute eq 26 in eq 7 and integrate
-2 0 2 to obtain
log(time—secs)

Figure 2. Solutions in phase plane for=1,v = 0.5,w = 0.5: a, In(1—«)— v+ 1) Ink) — 1 K
shorter time; b, longer times. Crosses refer to third iterate of Pfaser T = 1—« LV (28)
solution. (c) Time evolution of for 4 = 0.5, = 0.125,w = 0.375. DIR w w PR

are unaffected. To calculate errors we used a large number of
points for the complete solution and reduced the number for
the slow asymptote since these solutions do not approach the

initial point. The match with the numerical solution of the third _uln(c+yx—A)— (¢ +u)In(c) —o kz,uc
iterate over the slow asymptote is extremely good even where Tinv = wy, + CU_X INV
substrate and enzyme initial concentrations are equal. The (29)
iterative solution can also be refined to any degree desired. A

similar functional equation can be written for velocity. Other, MM and PSS solutions are

Equation 27 in eq 6 gives
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uln(c+y—21)— (@ +uwinlo) —o far lower error than the PSS and MM expressions. These

TMm = wy + approximations and the resulting time profiles compare favor-
Kt ably with the rigorous iterative solution for the slow decay

In(o) + —Cyn (30) regime based on a functional equation approach. The position-

wy ing technique developed is applicable even when the quasi-

1—0— yIn(0) equilibrium assumption is invalid.

Tpss™ — (31) ; P
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